- Home
- Standard 11
- Mathematics
Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and
$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$
depends on $A, B, C, D, E$
depends on $A, C, E$, but independent of $B$ and $D$
depends on $B, D$, but independent of $A, C, E$
is independent of $A, B, C, D, E$
Solution
(c)
We have,
$f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x $
$+C \cos 2 x+D \cos x+E $
We know that,
$\cos x =\cos (2 \pi-x) f(x) =f(2 \pi-x)$
$[\because f(x)$ contains only cosines terms]
$f\left(\frac{\pi}{5}\right)=f\left(2 \pi-\frac{\pi}{5}\right)=f\left(\frac{9 \pi}{5}\right)$
Similarly, $f\left(\frac{2 \pi}{5}\right)=f\left(\frac{8 \pi}{5}\right), f\left(\frac{3 \pi}{5}\right)=f\left(\frac{7 \pi}{5}\right)$
$f\left(\frac{4 \pi}{5}\right)=f\left(\frac{6 \pi}{5}\right)$
Let $T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)$
$T=f(0)-2\left[f\left(\frac{\pi}{5}\right)+f\left(\frac{3 \pi}{5}\right)\right]$
$\quad+2\left[f\left(\frac{2 \pi}{5}\right)+f\left(\frac{4 \pi}{5}\right)\right]-f(\pi)$
Now, $f(0)=1+A+B+C+D+E$
$f(\pi)=-1+A-B+C-D+E$
$\because f(0)-f(\pi)=2(1+B+D)$
$f\left(\frac{\pi}{5}\right) +f\left(\frac{3 \pi}{5}\right)$
$=2\left(1+B \cos \frac{3 \pi}{5}+D \cos \frac{\pi}{5}\right)$
$f\left(\frac{2 \pi}{5}\right) +f\left(\frac{4 \pi}{5}\right)$
$=2\left(1+B \cos \frac{6 \pi}{5}+D \cos \frac{2 \pi}{5}\right)$
Clearly, $T$ contains only $B$ and $D$ terms.