- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is
A
$0$
B
$1$
C
$2$
D
more than $2$
Solution
For tangent use : $\mathrm{C}^{2}=\mathrm{A}^{2} \mathrm{m}^{2}+\mathrm{B}^{2}$
$c^{2}=4 c^{2}+1$
$\Rightarrow \quad 3 c^{2}+1=0$
Not possible
Standard 11
Mathematics