Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

A

$0$

B

$1$

C

$2$

D

more than $2$

Solution

For tangent use : $\mathrm{C}^{2}=\mathrm{A}^{2} \mathrm{m}^{2}+\mathrm{B}^{2}$

$c^{2}=4 c^{2}+1$

$\Rightarrow \quad 3 c^{2}+1=0$

Not possible

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.