For a sequence $ < {a_n} > ,\;{a_1} = 2$ and $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$. Then $\sum\limits_{r = 1}^{20} {{a_r}} $ is
$\frac{{20}}{2}[4 + 19 \times 3]$
$3\left( {1 - \frac{1}{{{3^{20}}}}} \right)$
$2(1 - {3^{20}})$
None of these
Suppose that the sides $a,b, c$ of a triangle $A B C$ satisfy $b^2=a c$. Then the set of all possible values of $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ is
Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
The greatest integer less than or equal to the sum of first $100$ terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ is equal to
Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$
If ${\log _x}a,\;{a^{x/2}}$ and ${\log _b}x$ are in $G.P.$, then $x = $