Trigonometrical Equations
hard

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

A

$\frac{{5\pi }}{4}$

B

$\frac{{3\pi }}{4}$

C

$\frac{\pi }{2}$

D

All values of $x$

Solution

(a) Since $A.M.$ $ \ge $ $G.M.$

$\Rightarrow$  $\frac{1}{2}({2^{\sin x}} + {2^{\cos x}}) \ge \sqrt {{2^{\sin x}}{{.2}^{\cos x}}} $

$ \Rightarrow $ ${2^{\sin x}} + {2^{\cos x}} \ge {2.2^{\frac{{\sin x + \cos x}}{2}}}$

$ \Rightarrow $${2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \frac{{\sin x + \cos x}}{2}}}$

and we know that $\sin x + \cos x \ge – \sqrt 2 $

$\therefore $ ${2^{\sin x}} + {2^{\cos x}} > {2^{1 – (1/\sqrt 2 )}}$, for $x = \frac{{5\pi }}{4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.