$x$ का वह मान, जिसके लिए ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ अस्तित्व में है, होगा
$\frac{{5\pi }}{4}$
$\frac{{3\pi }}{4}$
$\frac{\pi }{2}$
$x$ के सभी मान
माना $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ तथा $\beta=\sum_{\mathrm{x} \in \mathrm{S}} \tan ^2\left(\frac{\mathrm{x}}{3}\right)$, तो $\frac{1}{6}(\beta-14)^2$ बराबर है
समीकरण $a\sin x + b\cos x = c$ , जहाँ $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ के हलों की संख्या है
यदि $4{\sin ^4}x + {\cos ^4}x = 1,$ तब $x = $
यदि $\sin 5x + \sin 3x + \sin x = 0$, तो शून्य के अतिरिक्त अंतराल $0 \le x \le \frac{\pi }{2}$ में $x$ का मान होगा
समीकरणों $\sin \theta = \sin \alpha $ तथा $\cos \theta = \cos \alpha $ को संतुष्ट करने वाला $\theta $ का सर्वव्यापक मान है