13.Oscillations
medium

The period of a simple pendulum measured inside a stationary lift is found to be $T$. If the lift starts accelerating upwards with acceleration of $g/3,$ then the time period of the pendulum is

A

$\frac{T}{{\sqrt 3 }}$

B

$\frac{T}{3}$

C

$\frac{{\sqrt 3 }}{2}T$

D

$\sqrt 3 \,T$

Solution

(c) For stationary lift ${T_1} = 2\pi \sqrt {\frac{l}{g}} $ 

For ascending lift with acceleration a, ${T_2} = 2\pi \sqrt {\frac{l}{{g + a}}} $

$ \Rightarrow \frac{{{T_1}}}{{{T_2}}} = \sqrt {\frac{{g + a}}{g}} $

$\Rightarrow \frac{{{T_1}}}{{{T_2}}} = \sqrt {\frac{{g + \frac{g}{3}}}{g}} = \sqrt {\frac{4}{3}}$

$\Rightarrow {T_2} = \frac{{\sqrt 3 }}{2}T$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.