The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-
$\pi$
$2\pi$
$\frac{\pi}{2}$
Not defined
Period of $f(x) = nx + n - [nx + n]$, $n \in N$
where [ ] denotes the greatest integer function is :
Domain of $log\,log\,log\, ....(x)$ is
$ \leftarrow \,n\,\,times\, \to $
Let, $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ and $A=\{x \in R: f(x)=1\} .$ Then, $A$ has
Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is
Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is