1.Relation and Function
hard

The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z 😐 a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is

A

$3$

B

$4$

C

$1$

D

$2$

(JEE MAIN-2023)

Solution

$f:\{1,2,3,4\} \rightarrow\{ a \in Z 😐 a | \leq 8\}$

$f( n )+\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$

$f( n +1)$ must be divisible by $n$

$f(4) \Rightarrow-6,-3,0,3,6$

$f(3) \Rightarrow-8,-6,-4,-2,0,2,4,6,8$

$f(2) \Rightarrow-8, \ldots \ldots \ldots \ldots \ldots, 8$

$f(1) \Rightarrow-8, \ldots \ldots \ldots \ldots \ldots, 8$

$\frac{f(4)}{3}$ must be odd since $f(3)$ should be even therefore $2$ solution possible.

$f(4)$ $f(3)$ $f(2)$ $f(1)$
$-3$ $2$ $0$ $1$
$3$ $0$ $1$ $0$
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.