1.Relation and Function
medium

Suppose that a function $f: R \rightarrow R$ satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(1)=3 .$ If $\sum \limits_{i=1}^{n} f(i)=363,$ then $n$ is equal to

A

$6$

B

$5$

C

$7$

D

$4$

(JEE MAIN-2020)

Solution

$f(x+y)=f(x) f(y)$

put $x = y =1 \quad f(2)=(f(1))^{2}=3^{2}$

put $x=2, y=1 \quad f(3)=(f(1))^{3}=3^{3}$ :

Similarly $f(x)=3^{x}$

$\sum_{i=1}^{n} f(i)=363 \Rightarrow \sum_{i=1}^{n} 3^{i}=363$

$\left(3+3^{2}+\ldots+3^{n}\right)=363$

$\frac{3\left(3^{n}-1\right)}{2}=363$

$3^{n}-1=242 \Rightarrow 3^{n}=243$

$\Rightarrow n =5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.