The point $(2, 3)$ is a limiting point of a coaxial system of circles of which ${x^2} + {y^2} = 9$ is a member. The co-ordinates of the other limiting point is given by
$\left( {\frac{{18}}{{13}},\frac{{27}}{{13}}} \right)$
$\left( {\frac{9}{{13}},\frac{6}{{13}}} \right)$
$\left( {\frac{{18}}{{13}}, - \frac{{27}}{{13}}} \right)$
$\left( { - \frac{{18}}{{13}}, - \frac{9}{{13}}} \right)$
Choose the correct statement about two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-10 y+137=0$
The radical axis of two circles and the line joining their centres are
Choose the incorrect statement about the two circles whose equations are given below
$x^{2}+y^{2}-10 x-10 y+41=0$ and $x^{2}+y^{2}-16 x-10 y+80=0$
The equation of the circle having its centre on the line $x + 2y - 3 = 0$ and passing through the points of intersection of the circles ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and ${x^2} + {y^2} - 4x - 2y + 4 = 0$, is
If the circles ${x^2} + {y^2} = {a^2}$and ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ touch each other externally, then