Let the mirror image of a circle $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ in line $y=x+1$ be $c_{2}: 5 x^{2}+5 y^{2}+10 g x$ $+10 f y +38=0$. If $r$ is the radius of circle $c _{2}$, then $\alpha+6 r^{2}$ is equal to$.....$
$13$
$11$
$12$
$10$
The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$ touch each other. The equation of their common tangent is
Equation of radical axis of the circles ${x^2} + {y^2} - 3x - 4y + 5 = 0$, $2{x^2} + 2{y^2} - 10x$$ - 12y + 12 = 0$ is
The locus of centre of a circle passing through $(a, b)$ and cuts orthogonally to circle ${x^2} + {y^2} = {p^2}$, is
If the circles ${x^2} + {y^2} = 4,{x^2} + {y^2} - 10x + \lambda = 0$ touch externally, then $\lambda $ is equal to
The equation of the circle which passes through the origin, has its centre on the line $x + y = 4$ and cuts the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$ orthogonally, is