6.System of Particles and Rotational Motion
medium

The position of a particle is given by : $\overrightarrow {r\,}  = (\hat i + 2\hat j - \hat k)$ and momentum $\overrightarrow P  = (3\hat i + 4\hat j - 2\hat k)$. The angular momentum is perpendicular to        

A

$X$ - axis

B

$Y$ - axis

C

$Z$ - axis

D

Line at equal angles to all the three axes

Solution

$\mathop L\limits^ \to   = \mathop r\limits^ \to   \times \mathop p\limits^ \to   = $ $\left| {\,\begin{array}{*{20}{c}}{\hat i\,\,}&{\hat j\,\,}&{\,\,\hat k}\\{1\,\,}&{\,2\,\,}&{ – 1}\\{3\,\,}&{\,4\,\,}&{ – 2}\end{array}\,} \right|$ $ = 0\hat i – \hat j – 2\hat k =  – \hat j – 2\hat k$  and the X- axis is given by $i + 0\hat j + 0\hat k$

Dot product of these two vectors is zero $i.e.$ angular momentum is perpendicular to $X$ – axis.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.