The position of a particle is given by

$r=3.0 t \hat{i}+2.0 t^{2} \hat{j}+5.0 \hat{k}$

where $t$ is in seconds and the coefficients have the proper units for $r$ to be in metres.

$(a)$ Find $v (t)$ and $a (t)$ of the particle.

$(b)$ Find the magnitude and direction of $v (t)$ at $t=1.0 s$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$v (t)=\frac{ d r }{ d t}=\frac{ d }{ d t}\left(3.0 t \hat{ i }+2.0 t^{2} \hat{ j }+5.0 \hat{ k }\right)$

$=3.0 \hat{ i }+4.0 t \hat{ j }$

$a (t)=\frac{ d v }{ d t}=+4.0 \hat{ j }$

$ a=4.0 m s ^{-2}$ along $y-$ direction

At $t=1.0 s , \quad v =3.0 \hat{ i }+4.0 \hat{ j }$

It's magnitude is $v=\sqrt{3^{2}+4^{2}}=5.0 m s ^{-1}$

and direction is $\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{4}{3}\right) \cong 53^{\circ}$ with $x$ -axis.

Similar Questions

A particle starts from rest and performing circular motion of constant radius with speed given by $v = \alpha \sqrt x$ where $\alpha$ is a constant and $x$ is the distance covered. The correct graph of magnitude of its tangential acceleration $(a_t)$ and centripetal acceleration $(a_c)$ versus $t$ will be:

Find the value of Relative velocity of any two particles moving in a frame of reference.

The position vector of a particle changes with time according to the relation $\vec r\left( t \right) = 15{t^2}\hat i + \left( {4 - 20{t^2}} \right)\hat j$. What is the magnitude of the acceleration at $t = 1$ ?

  • [JEE MAIN 2019]

For any arbitrary motion in space, which of the following relations are true

$(a)$ $\left. v _{\text {average }}=(1 / 2) \text { (v }\left(t_{1}\right)+ v \left(t_{2}\right)\right)$

$(b)$ $v _{\text {average }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$

$(c)$ $v (t)= v (0)+ a t$

$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2)$ a $t^{2}$

$(e)$ $a _{\text {merage }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$

(The 'average' stands for average of the quantity over the time interval $t_{1}$ to $t_{2}$ )

The figure shows a velocity-time graph of a particle moving along a straight line  The total distance travelled by the particle is  ........ $m$