दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$के सापेक्ष बिन्दु $(1, 3)$ की स्थिति है
दीर्घवृत्त के बाहर
दीर्घवृत्त पर
दीर्घ अक्ष पर
लघु अक्ष पर
यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $
एक बिन्दु इस प्रकार गमन करता है कि उसकी बिन्दु $(-2, 0)$ से दूरी रेखा $x = - \frac{9}{2}$ से दूरी की $\frac{2}{3}$ गुनी है तो उसका बिन्दुपथ होगा
दीर्घवृत्त $3 x ^{2}+5 y ^{2}=32$ के बिन्दु $P (2,2)$ पर खींची गई स्पर्श रेखा तथा अभिलंब, $x$-अक्ष को क्रमशः $Q$ तथा $R$ पर काटते है। तो त्रिभुज $PQR$ का क्षेत्रफल (वर्ग इकाइयों में) हैं
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y-$अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।