- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
medium
यदि त्रिज्या के स्थिति सदिश $2\hat i + \hat j + \hat k$ तथा $2\hat i - 3\hat j + \hat k$ जबकि रेखीय संवेग $2\hat i + 3\hat j - \hat k.$ हों, तब कोणीय संवेग का मान होगा
A$2\hat i - 4\hat k$
B$4\hat i - 8\hat k$
C$2\hat i - 4\hat j + 2\hat k$
D$4\hat i - 8\hat k$
Solution
(b) त्रिज्यीय सदिश $\mathop r\limits^ \to = \mathop {{r_2}}\limits^ \to – \mathop {{r_1}}\limits^ \to = (2\hat i – 3\hat j + \hat k) – (2\hat i + \hat j + \hat k)$
$⇒$ $\overrightarrow {\;\,r} = – 4\hat j$
रेखीय संवेग$\mathop p\limits^ \to = 2\hat i + 3\hat j – \hat k$
$\mathop L\limits^ \to = \mathop r\limits^ \to \times \mathop p\limits^ \to = ( – 4\hat j) \times (2\hat i + 3\hat j – \hat k)$
$ = \left| {\,\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 0&{ – 4}&0\\ 2&3&{ – 1} \end{array}\,} \right|$
$ = 4\hat i – 8\hat k$
$⇒$ $\overrightarrow {\;\,r} = – 4\hat j$
रेखीय संवेग$\mathop p\limits^ \to = 2\hat i + 3\hat j – \hat k$
$\mathop L\limits^ \to = \mathop r\limits^ \to \times \mathop p\limits^ \to = ( – 4\hat j) \times (2\hat i + 3\hat j – \hat k)$
$ = \left| {\,\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 0&{ – 4}&0\\ 2&3&{ – 1} \end{array}\,} \right|$
$ = 4\hat i – 8\hat k$
Standard 11
Physics