The potential energy of a particle oscillating along $x-$ axis is given as $U =20+ (x - 2)^2$ where $U$ is in $joules$ and $x$ in $meters$ . Total mechanical energy of the particle is $36 \,J$. Maximum kinetic energy of the particle is ............... $\mathrm{J}$

  • A

    $24$

  • B

    $36$

  • C

    $16$

  • D

    $20$

Similar Questions

A block of mass $1\,kg$ is pushed up a surface inclined to horizontal at an angle of $30^o$ by a force of $10\,N$ parallel to the inclined surface (figure). The coefficient of friction between block and the incline is $0.1$. If the block is pushed up by $10\,m$  along the inclined calculate 

$(a)$ work done against gravity

$(b)$ work done against force of friction

$(c)$ increases in potential energy

$(d)$ increases in kinetic energy

$(e)$ work done by applied force

A force acts on a $3\, gm$ particle in such a way that the position of the particle as a function of time is given by $x = 3t -4t^2 + t^3$ , where $x$ is in $meters$ and $t$ is in $seconds$ . The work done during the first $4\, second$ is ................. $\mathrm{mJ}$

Three particles of masses $10g, 20g$ and $40g$ are moving with velocities $10\widehat i,10\widehat j$ and  $10\widehat k$ $m/s$ respectively. If due to some mutual interaction, the first particle comes to  rest and the velocity of second particle becomes $\left( {3\widehat i + 4\widehat j\,\,} \right)\, m/s$, then the velocity of third particle is

A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{mv^2}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle

$A$ particle of mass $m$ is released from $a$ height $H$ on $a$ smooth curved surface which ends into a vertical loop of radius $R$, as shown The minimum value of $H$ required so that the particle makes a complete vertical circle is given by