Gujarati
Hindi
1.Units, Dimensions and Measurement
hard

The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is

A

$\frac{\alpha}{\beta \gamma}$

B

$\frac{\alpha^2}{\beta \gamma}$

C

$\frac{\gamma}{\alpha \beta}$

D

$\frac{\alpha \gamma}{\beta}$

(KVPY-2012)

Solution

(d)

Potential energy of the particle is

$V(x)=-\alpha x+\beta \sin \left(\frac{x}{\gamma}\right)$

Clearly, dimensions of $\alpha, \beta$ and $\gamma$ are

$[\alpha]=\frac{[ V ]}{[ x ]}=\frac{\left[ ML ^2 T ^{-2}\right]}{[ L ]}=\left[ MLT ^{-2}\right]$

$\mid \beta]=[ V ]=\left[ ML ^2 T ^{-2}\right]$

and $[\gamma]=[ x ]=[ L ]$

$=\left[ M ^0 L ^0 T ^0\right]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.