Gujarati
Hindi
7.Gravitation
normal

The potential energy of a satellite of mass $m$ and revolving at a height $R_e$ above the surface of earth where $R_e =$ radius of earth, is 

A

$-m\, g\, R_e$

B

$\frac{{ - m\,g\,{R_e}}}{2}$

C

$\frac{{ - m\,g\,{R_e}}}{3}$

D

$\frac{{ - m\,g\,{R_e}}}{4}$

Solution

At a height $\mathrm{h}$ above the surface of earth the gravitational potential energy of the particle of mass $\mathrm{m}$ is

$\mathrm{U}_{\mathrm{h}}=-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}_{\mathrm{e}}+\mathrm{h}}$

Where $\mathrm{M}_{\mathrm{e}} $ and $ \mathrm{R}_{\mathrm{e}}$ are the mass and radius of earth respectively.

In this question, since $\mathrm{h}=\mathrm{R}_{\mathrm{e}}$

So $U_{h-R_{e}}=-\frac{G M_{e} m}{2 R_{e}}=\frac{-m g R_{e}}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.