The potential to which a conductor is raised, depends on
The amount of charge
Geometry and size of the conductor
Both $(a)$ and $(b)$
Only on $(a)$
A $500\,\mu F$ capacitor is charged at a steady rate of $100\,\mu C/sec$ . The potential difference across the capacitor will be $10\,V$ after an interval of......$sec$
Capacitance of an isolated conducting sphere of radius $R_{1}$ becomes $n$ times when it is enclosed by a concentric conducting sphere of radius $R_{2}$ connected to earth. The ratio of their radii $\left(\frac{ R _{2}}{ R _{1}}\right)$ is:
Sixty-four drops are jointed together to form a bigger drop. If each small drop has a capacitance $C$, a potential $V$, and a charge $q$, then the capacitance of the bigger drop will be
$64$ drops each having the capacity $C$ and potential $V$ are combined to form a big drop. If the charge on the small drop is $q$, then the charge on the big drop will be
Two similar conducting balls having charges $+q$ and $-q$ are placed at a separation $d$ from each other in air. The radius of each ball is $r$ and the separation between their centres is $d(d > > r)$. Calculate the capacitance of the two ball system