The pressure inside a small air bubble of radius $0.1\, mm$ situated just below the surface of water will be equal to [Take surface tension of water $70 \times {10^{ - 3}}N{m^{ - 1}}$ and atmospheric pressure = $1.013 \times {10^5}N{m^{ - 2}}$]
$2.054 \times {10^3}\,Pa$
$1.027 \times {10^3}\,Pa$
$1.027 \times {10^5}\,Pa$
$2.054 \times {10^5}\,Pa$
Air (density $\rho$ ) is being blown on a soap film (surface tension $T$ ) by a pipe of radius $R$ with its opening right next to the film. The film is deformed and a bubble detaches from the film when the shape of the deformed surface is a hemisphere. Given that the dynamic pressure on the film due to the air blown at speed $v$ is $\frac{1}{2} \rho v^{2}$, the speed at which the bubble formed is
If two glass plates have water between them and are separated by very small distance ( see figure), it is very difficult to pull them apart. It is because the water in between forms cylindrical surface on the side that gives rise to lower pressure in the water in comparison to atmosphere. If the radius of the cylindrical surface is $R$ and surface tension of water is $T$ then the pressure in water between the plates is lower by
Two narrow bores of diameter $5.0\, {mm}$ and $8.0\, {mm}$ are joined together to form a $U-$shaped tube open at both ends. If this ${U}$-tube contains water, what is the difference in the level of two limbs of the tube.
[Take surface tension of water ${T}=7.3 \times 10^{-2} \, {Nm}^{-1}$, angle of contact $=0, {g}=10\, {ms}^{-2}$ and density of water $\left.=1.0 \times 10^{3} \,{kg} \,{m}^{-3}\right]$ (in $mm$)
A soap bubble, having radius of $1\; \mathrm{mm}$, is blown from a detergent solution having a surface tension of $2.5 \times 10^{-2}\; N / m$. The pressure inside the bubble equals at a point $Z_{0}$ below the free surface of water in a container. Taking $g=10\; \mathrm{m} / \mathrm{s}^{2}$ density of water $=10^{3} \;\mathrm{kg} / \mathrm{m}^{3},$ the value of $\mathrm{Z}_{0}$ is......$cm$
Two bubbles $A$ and $B$ $(r_A > r_B)$ are joined through a narrow tube. Then