એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના $0.5$ છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના $0.1$ છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના $0.75$ હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ and $B$ be the events of passing English and Hindi examination respectively.

Accordingly, $P ( A $ and $B)=0.5$,  $P ($ not $A$ and  $B )=0.1,$

i.e., $P \left( A^{\prime} \cap B ^{\prime}\right)=0.1$

$P ( A )=0.75$

Now, $P ( A \cap B ) ^{\prime}= P \left( A ^{\prime} \cap B ^{\prime}\right)$            [De Morgan's law]

$\therefore P(A \cap B)^{\prime}=P\left(A^{\prime} \cap B^{\prime}\right)=0.1$

$P ( A \cup B )=1- P ( A \cup B )^{\prime} =1-0.1=0.9$

We know that $P ( A$ or $ B )= P ( A )+ P ( B )- P ( A$ and $ B )$

$\therefore $  $0.9=0.75+ P ( B )-0.5$

$\Rightarrow P ( B )=0.9-0.75+0.5$

$\Rightarrow P(B)=0.65$

Thus, the probability of passing the Hindi examination is $0.65$.

Similar Questions

ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.

$P ( A )=0.5$,  $ P ( B )=0.7$,  $P ( A \cap B )=0.6$

પેટી $A$ માં છ લાલ અને ચાર કાળા દડા છે અને પેટી $B$ માં ચાર લાલ અને છ કાળા દડા છે.જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $B$ માં મુકવામાં આવે છે.અને પછી એક દડો પેટી $B$ માંથી યાદ્રચ્છિક રીતે પસંદ કરી ને પેટી $A$ માં મુકવામાં આવે છે.હવે જો એક દડો પેટી $A$ માંથી યાદ્રચ્છિક રીતે પસંદ કરતાં તે લાલ હેાય તેની સંભાવના મેળવો.

  • [IIT 1988]

એક થેલામાં $4$ લાલ અને $ 4$ વાદળી દડા છે. ચાર દડા એક પછી એક થેલામાંથી લેવામાં આવે છે. તો પસંદ થયેલા દડા ક્રમિક રીતે ભિન્ન  રંગના હોવાની સંભાવના શોધો.

એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો. 

ધરોકે $A, B,$ અને $C$ એ ઘટના ઓ છે કે જેથી $ P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$  તો   $P\,(A + B) = .....$