Let the circles $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ and $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ touch each other externally at the point $(6,6)$. If the point $(6,6)$ divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio $2: 1$, then $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$ equals
$110$
$130$
$125$
$145$
The equation of a circle that intersects the circle ${x^2} + {y^2} + 14x + 6y + 2 = 0$orthogonally and whose centre is $(0, 2)$ is
If a circle $C,$ whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$ then the length of the intercept cut by circle $c,$ on the $x-$ axis is equal to
The minimum distance between any two points $P _{1}$ and $P _{2}$ while considering point $P _{1}$ on one circle and point $P _{2}$ on the other circle for the given circles' equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is .........
If $y = 2x$ is a chord of the circle ${x^2} + {y^2} - 10x = 0$, then the equation of the circle of which this chord is a diameter, is
Answer the following by appropriately matching the lists based on the information given in the paragraph
Let the circles $C_1: x^2+y^2=9$ and $C_2:(x-3)^2+(y-4)^2=16$, intersect at the points $X$ and $Y$. Suppose that another circle $C_3:(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions :
$(i)$ centre of $C _3$ is collinear with the centres of $C _1$ and $C _2$
$(ii)$ $C _1$ and $C _2$ both lie inside $C _3$, and
$(iii)$ $C _3$ touches $C _1$ at $M$ and $C _2$ at $N$.
Let the line through $X$ and $Y$ intersect $C _3$ at $Z$ and $W$, and let a common tangent of $C _1$ and $C _3$ be a tangent to the parabola $x^2=8 \alpha y$.
There are some expression given in the $List-I$ whose values are given in $List-II$ below:
$List-I$ | $List-II$ |
$(I)$ $2 h + k$ | $(P)$ $6$ |
$(II)$ $\frac{\text { Length of } ZW }{\text { Length of } XY }$ | $(Q)$ $\sqrt{6}$ |
$(III)$ $\frac{\text { Area of triangle } MZN }{\text { Area of triangle ZMW }}$ | $(R)$ $\frac{5}{4}$ |
$(IV)$ $\alpha$ | $(S)$ $\frac{21}{5}$ |
$(T)$ $2 \sqrt{6}$ | |
$(U)$ $\frac{10}{3}$ |
($1$) Which of the following is the only INCORRECT combination?
$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$
($2$) Which of the following is the only CORRECT combination?
$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$
Give the answer or quetion ($1$) and ($2$)