The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)

  • A

    $[-\sqrt 2 ,\sqrt 2 ]$

  • B

    $\{0, 1, 2\}$

  • C

    $\{-1, 0, 1\}$

  • D

    $\{-2. -1, 0, 1\}$

Similar Questions

Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f : A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to $...............$.

  • [JEE MAIN 2023]

The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.

Which of the following statements are true?

$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$

$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$

$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$

$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.

  • [KVPY 2016]

Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals

  • [JEE MAIN 2019]

The range of the polynomial $P(x)=4 x^3-3 x$ as $x$ varies over the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is

  • [KVPY 2016]

The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is