If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to
$1/f(x)$
$1/f(y)$
$yf(x)$
$f(y)$
If $f( x + y )=f( x ) f( y )$ and $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ where $N$ is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is
Domain of the function $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ is
Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval
The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set
Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals