વિધેય $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ નો વિસ્તાર મેળવો.
$\{1, 2, 3, 4, 5\}$
$\{1, 2, 3, 4, 5, 6\}$
$\{1, 2, 3, 4\}$
$\{1, 2, 3\}$
સાબિત કરો કે વિધેય $f : R \rightarrow\{ x \in R :-1< x <1\}$, $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$, એક-એક અને વ્યાપ્ત વિધેય છે.
$log\,log\,log\, ....(x)$ નો પ્રદેશગણ મેળવો.
$ \leftarrow \,n\,\,times\, \to $
જો $f(x)$ એ દ્રીઘાત સમીકરણ છે કે જેથી $f(1) + f (2)\, = 0$ , અને $-1$ એ $f(x)\, = 0$ નું એક બીજ હોય તો $f(x)\, = 0$ નું બીજું બીજ મેળવો.
વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.
જો $f(x + ay,\;x - ay) = axy$, તો $f(x,\;y) =$