જો $x \in R$ માટે $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ , તો $f(2002) = $
$1$
$2$
$3$
$4$
જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.
જો મહતમ પૃણાંક વિધેય હોય કે જેનો પ્રદેશ વાસ્તવિક સંખ્યા હોય તો તેનો વિસ્તાર મેળવો.
સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી.
ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી.
વિધેય $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ નો વિસ્તાર મેળવો.