7.Binomial Theorem
normal

The ratio of coefficient of $x^2$ to coefficient of $x^{10}$ in the expansion of ${\left( {{x^5} + {{4.3}^{ - {{\log }_{\sqrt 3 }}\sqrt {{x^3}} }}} \right)^{10}}$ is

A

$4:7$

B

$10:3$

C

$3:10$

D

$7:4$

Solution

${\left( {{x^5} + {{4.3}^{ – {{\log }_{\sqrt 3 }}\sqrt {{x^3}} }}} \right)^{10}} = {\left( {{x^5} + 4 \cdot {x^{ – 3}}} \right)^{10}}$

${{\rm{T}}_{{\rm{r}} + 1}} = {\,^{10}}{{\rm{C}}_{\rm{r}}}{\left( {{{\rm{x}}^5}} \right)^{10 – {\rm{r}}}}{\left( {4{{\rm{x}}^{ – 3}}} \right)^r}$

$ = {\,^{10}}{{\rm{C}}_{\rm{r}}}{4^r}{{\rm{x}}^{50 – 5{\rm{r}} – 3{\rm{r}}}}$

$ = {\,^{10}}{{\rm{C}}_r}{{\rm{4}}^r}{{\rm{x}}^{50 – 8{\rm{r}}}}$

$50-8 r=2 \Rightarrow r=6$

and  $50-8 r=10 \Rightarrow r=5$

Required ratio

$ = \frac{{^{10}{C_6}{4^6}}}{{^{10}{C_5}{4^5}}} = \frac{{10}}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.