Gujarati
8. Sequences and Series
easy

The ratio of the sums of first $n$ even numbers and $n$ odd numbers will be

A

$1:n$

B

$(n + 1):1$

C

$(n + 1):n$

D

$(n - 1):1$

Solution

(c) Let ${S_{Even}} = 2 + 4 + 6 + 8 + ……..\infty $ …..$(i)$

and ${S_{Odd}} = 1 + 3 + 5 + 7 + 9 + …….\infty $ …..$(ii)$

${S_E} = \frac{n}{2}[4 + (n – 1)2] = \frac{n}{2}(2n + 2) = n(n + 1)$

${S_O} = \frac{n}{2}[2 + (n – 1)2] = \frac{n}{2}(2n)$

Now $\frac{{{S_E}}}{{{S_O}}} = \frac{{(n + 1)}}{n}$

or ${S_E}:{S_O} = (n + 1):n$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.