The roots of the quadratic equation $3 x ^2- px + q =0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first $11$ terms of this arithmetic progression is $88$ , then $q-2 p$ is equal to_______

  • [JEE MAIN 2025]
  • A
    $474$
  • B
    $426$
  • C
    $423$
  • D
    $478$

Similar Questions

Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........

  • [JEE MAIN 2022]

If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then

Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$

If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :

  • [JEE MAIN 2020]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$