- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
The real values of $x$ and $y$ for which the equation $({x^4} + 2xi) - (3{x^2} + yi) = $$(3 - 5i) + (1 + 2yi)$ is satisfied, are
A
$x = 2,y = 3$
B
$x = - 2,y = \frac{1}{3}$
C
Both $(a)$ and $(b)$
D
None of these
Solution
(c) Given equation
$({x^4} + 2xi) – (3{x^2} + yi) = (3 – 5i) + (1 + 2yi)$
$ \Rightarrow \,\,\,({x^4} – 3{x^2}) + i(2x – 3y) = 4 – 5i$
Equating real and imaginary parts, we get
${x^4} – 3{x^2} = 4$ ……$(i)$
and $2x – 3y = – 5$ …..$(ii)$
From $(i)$ and $(ii),$ we get $x = \pm 2$and $y = 3,\frac{1}{3}$
Trick : Put $x = 2,y = 3$and then $x = – 2,$$y = \frac{1}{3},$ we see that they both satisfy the given equation.
Standard 11
Mathematics