The region between $y = 0$ and $y = d$ contains a magnetic field $\vec B = B\hat z$ A particle of mass $m$ and charge $q$ enters the region with a velocity $\vec v = v\hat i$. If $d = \frac{{mv}}{{2qB}}$ , the acceleration of the charged particle at the point of its emergence at the other side is
$\frac{{qvB}}{m}\,\left( {\,\frac{{ \hat j + \hat i}}{{\sqrt 2 }}} \right)$
$\frac{{qvB}}{m}{\mkern 1mu} \left( {{\mkern 1mu} \frac{{\sqrt 3 }}{2}{\mkern 1mu} \hat i + \frac{1}{2}\hat j} \right)$
$\frac{{qvB}}{m}\,\left( {\,\frac{{ - \hat j + \hat i}}{{\sqrt 2 }}} \right)$
$\frac{{qvB}}{m}{\mkern 1mu} \left( {\frac{1}{2}\hat j - \frac{{\sqrt 3 }}{2}\hat i} \right)$
A charge $q$ is released in presence of electric $(E)$ and magnetic field $(B)$ then after some time its velocity is $v$ then
An electron moving with a velocity ${\vec V_1} = 2\,\hat i\,\, m/s$ at a point in a magnetic field experiences a force ${\vec F_1} = - 2\hat j\,N$ . If the electron is moving with a velocity ${\vec V_2} = 2\,\hat j \,\,m/s$ at the same point, it experiences a force ${\vec F_2} = + 2\,\hat i\,N$ . The force the electron would experience if it were moving with a velocity ${\vec V_3} = 2\hat k$ $m/s$ at the same point is
A particle with charge $+Q$ and mass m enters a magnetic field of magnitude $B,$ existing only to the right of the boundary $YZ$. The direction of the motion of the $m$ particle is perpendicular to the direction of $B.$ Let $T = 2\pi\frac{m}{{QB}}$ . The time spent by the particle in the field will be
If the direction of the initial velocity of the charged particle is neither along nor perpendicular to that of the magnetic field, then the orbit will be
In case Hall effect for a strip having charge $Q$ and area of cross-section $A$, the Lorentz force is