પ્રાકૃતિક સંખ્યા પર સંબંધ $“ < ”$ એ . . .
માત્ર સંમિત
માત્ર પરંપરિત
માત્ર સ્વવાચક
સામ્ય સંબંધ
ગણ $A$ એ પરનો ખાલી સંબંધએ . . . . થાય.
જો $X$ એ ગણોનો સમુહ છે અને $R$ એ $X$ પરનો સંબંધ છે કે જે ‘$A$ અને $B$ અલગ ગણ છે.’ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . .
સાબિત કરો કે પૂર્ણાકોના ગણ $\mathrm{Z}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{a}, \mathrm{b}): 2$ એ $\left( {{\rm{a}} - {\rm{b}}} \right)$ નો અવયવ છે $\} $ એ સામ્ય સંબંધ છે.
જો $P$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેથી $P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. હોય તો $P$ એ . . . .
$R$ પર વ્યાખ્યાયિત સંબંધ $S =\left\{(a, b): a \leq b^{3}\right\}$ એ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.