પૂર્ણાકોના ગણ $\mathrm{Z}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ એ પૂર્ણાક છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
$\mathrm{R} =\{( \mathrm{x} , \mathrm{y} )\,:\, \mathrm{x} - \mathrm{y}$ is an integer $\}$
Now, for every $\mathrm{x} \in \mathrm{Z} ,( \mathrm{x} ,\,\mathrm{x} ) \in \mathrm{R}$ as $\mathrm{x} - \mathrm{x} =0$ is an integer.
$\therefore $ $\mathrm{R}$ is reflexive.
Now, for every $\mathrm{x} ,\, \mathrm{y} \in \mathrm{Z} ,$ if $( \mathrm{x} ,\,\mathrm{ y} ) \in \mathrm{R} ,$ then $\mathrm{x} - \mathrm{y}$ is an integer.
$\Rightarrow-(\mathrm{x}-\mathrm{y})$ is also an integer.
$\Rightarrow(\mathrm{y}-\mathrm{x})$ is an integer.
$\therefore $ $( \mathrm{y} ,\, \mathrm{x} ) \in \mathrm{R}$
$\therefore \mathrm{R}$ is symmetric.
Now, Let $( \mathrm{x} , \,\mathrm{y} )$ and $( \mathrm{y} ,\, \mathrm{z} ) \in \mathrm{R} ,$ where $\mathrm{x} ,\, \mathrm{y} ,\, \mathrm{z} \in \mathrm{Z}$
$\Rightarrow $ $(\mathrm{x}-\mathrm{y})$ and $(\mathrm{y}-\mathrm{z})$ are integers.
$\Rightarrow $ $\mathrm{x}-\mathrm{z}=(\mathrm{x}-\mathrm{y})+(\mathrm{y}-\mathrm{z})$ is an integer.
$\therefore$ $( \mathrm{x} ,\, \mathrm{z} ) \in \mathrm{R}$
$\therefore $ $\mathrm{R}$ is transitive.
Hence, $\mathrm{R}$ is reflexive, symmetric, and transitive.
જો $n(A) = n$ હોય તો ગણ $A$ પરના સંબંધની કુલ સંખ્યા મેળવો.
જો $X$ એ ગણોનો સમુહ છે અને $R$ એ $X$ પરનો સંબંધ છે કે જે ‘$A$ અને $B$ અલગ ગણ છે.’ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . .
સાબિત કરો કે ગણ $A=\{1,2,3,4,5\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b):|a-b|$ યુગ્મ છે $\} $ સામ્ય સંબંધ છે. સાબિત કરો કે $\{1,3,5\}$ ના બધા જ ઘટકો એકબીજા સાથે સંબંધ $R$ ધરાવે છે અને $ \{2,4\}$ ના બધા જ ઘટકો એકબીજા સાથે સંબંધ $R$ ધરાવે છે. પરંતુ $\{1,3,5\}$ નો એક પણ ઘટક $ \{2,4\}$ ના કોઈ પણ ઘટક સાથે સંબંધ $R$ ધરાવતો નથી.
જે સંમિત અને પરંપરિત હોય પરંતુ સ્વવાચક ના હોય, તેવા સંબંધોનાં ઉદાહરણો આપો.
જે સંમિત હોય પરંતુ સ્વવાચક કે પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો