किसी वस्तु के पदार्थ का आपेक्षिक घनत्व इसे पहले वायु में फिर पानी में तोल कर मापा गया। यदि वायु में भार ($5.00  \pm 0.05$) न्यूटन तथा पानी में भार ($4.00  \pm 0.05$) न्यूटन है, तो आपेक्षिक घनत्व में अधिकतम प्रतिशत त्रुटि होगी

  • A

    $5.0  \pm 11\%$

  • B

    $5.0  \pm 1\%$

  • C

    $5.0  \pm 6\%$

  • D

    $1.25  \pm 5\%$

Similar Questions

एक वृतीय गोले के पृष्ठ क्षेत्रफल के मापन में सापेक्ष त्रुटि $\alpha$ पायी गयी। उसी गोले के आयतन के मापन मं सापेक्ष त्रुटि होगी

  • [JEE MAIN 2018]

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?

$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है

$(A) 0.04$    $(B) 0.03$    $(C) 0.02$   $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

एक सरल दोलक के प्रयोग, जिसमें गुरुत्वीय त्वरण $( g )$ मापना है, में $20$ दोलनों का समय एक $1 \,sec$. अल्पतमांक वाली एक विराम घड़ी से मापते हैं। इस समय का माध्य मान $30 \,s$ आता है। दोलक की लम्बाई को $1 \,mm$ अल्पतमांक के पैमाने से मापने पर $55.0 \,cm$ आती है। $g$ के मापन में प्रतिशत त्रुटि का सन्निकट मान .......... $\%$ होगा।

  • [JEE MAIN 2019]

दिया है प्रतिरोध $R =$$\frac{V}{i}$ जहाँ $V= 100$ $ \pm 5$ वोल्ट तथा $i = 10$ $ \pm 0.2$ ऐम्पियर है, तो $R$ में कुल त्रुटि ......... $\%$ होगी

एक प्रयोग में, एक पिंड के द्रव्यमान को एक ज्ञात बल लगा कर और इससे उत्पन्न त्वरण को माप कर ज्ञात किया जाता है । यदि प्रयोग में लगाए गए बल एवं मापे गए त्वरण का मान क्रमश: $10.0 \pm 0.2 \,N$ एवं $1.00 \pm 0.01 \,m / s ^2$ है, तो पिंड का द्रव्यमान ............. $kg$ होगा:

  • [KVPY 2015]