અવરોધ $R=V / I$, જ્યાં $V=(100 \pm 5)\;V$ અને $I=(10 \pm 0.2) \;A$ છે, તો $R$ માં પ્રતિશત ત્રુટિ શોધો.
$7$
$5$
$2$
$3$
અવરોધ $R_1 = 300 \pm 3\Omega $ અને અવરોધ $R_2 = 500 \pm 4\Omega$ ને શ્રેણીમાં જોડવામાં આવે, તો આ જોડાણનો સમતુલ્ય અવરોધ કેટલો થાય ?
ત્રણ વિદ્યાર્થી $S_{1}, S_{2}$ અને $S_{3}$ એ સાદા લોલકની મદદથી ગુરુત્વપ્રવેગ $(g)$ માપવાનો પ્રયોગ કરે છે. તે જુદી જુદી લંબાઈના લોલક વડે જુદા જુદા દોલનોની સંખ્યા માટેનો સમય નોંધે છે. આ અવલોકનો નીચેના ટેબલમાં આપેલા છે.
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
જો વર્તૂળના આવેલા વ્યાસમાં $ 4\% $ જેટલી ત્રુટિ છે, તો વર્તૂળની ત્રિજ્યામાં ત્રુટિ ........ $\%$ હશે .
ભૌતિકરાશિ $X$ એ માપી શકાય તેવી બીજી રાશિઓ $a,\, b,\, c$ અને $d$ સાથે સંબંધ ધરાવે છે. $X = a^2b^3c^{\frac {5}{2}}d^{-2}$ અને $a,\,b,\,c ,\,d$ તેના માપનમાં પ્રતિશત ત્રુટિ અનુક્રમે $1\,\%$, $2\,\%$, $3\,\%$ અને $4\,\%$ છે. તો $X$ માં ઉદભવતી પ્રતિશત ત્રુટિ ગણો. આ રીતે ગણતાં $X$ નું મૂલ્ય $2.763$ મળે છે તો આ પરિણામને યોગ્ય સાર્થક અંક સુધી round off કરો.
ત્રુટિઓના સંયોજન વિશે ટૂંકનોંધ લખો.