The resultant of $\vec A$ and $\vec B$ makes an angle $\alpha $ with $\vec A$ and $\beta $ with $\vec B$,

  • A

    $\alpha < \beta $

  • B

    $\alpha < \beta $ if $A < B$

  • C

    $\alpha < \beta $ if $A > B$

  • D

    $\alpha < \beta $ if $A = B$

Similar Questions

What is correct?

If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then  $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.

If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is ........ $^o$

  • [NEET 2016]

The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.

[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$

  • [JEE MAIN 2021]

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.