The resultant of $\vec A$ and $\vec B$ makes an angle $\alpha $ with $\vec A$ and $\beta $ with $\vec B$,

  • A

    $\alpha < \beta $

  • B

    $\alpha < \beta $ if $A < B$

  • C

    $\alpha < \beta $ if $A > B$

  • D

    $\alpha < \beta $ if $A = B$

Similar Questions

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.

The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.

[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$

  • [JEE MAIN 2021]

Magnitudes of two vector $\overrightarrow A $ and $\overrightarrow B $ are $4$ units and $3$ units respectively. If these vectors are $(i)$ in same direction $(\theta = 0^o).$ $(ii)$ in opposite direction $(\theta = 180^o)$, then give the magnitude of resultant vector.

Find the magnitude and direction of the resultant of two vectors $A$ and $B$ in terms of their magnitudes and angle $\theta$ between them.

Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $