The resultant of $\vec A$ and $\vec B$ makes an angle $\alpha $ with $\vec A$ and $\beta $ with $\vec B$,
$\alpha < \beta $
$\alpha < \beta $ if $A < B$
$\alpha < \beta $ if $A > B$
$\alpha < \beta $ if $A = B$
$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ then find their addition by algebric method.
The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.
[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$
Magnitudes of two vector $\overrightarrow A $ and $\overrightarrow B $ are $4$ units and $3$ units respectively. If these vectors are $(i)$ in same direction $(\theta = 0^o).$ $(ii)$ in opposite direction $(\theta = 180^o)$, then give the magnitude of resultant vector.
Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $