$\vec A$ અને $\vec B$ નો પરિણામી $\vec A$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\vec B$ સાથે $\beta $ ખૂણો બનાવે તો .....
$\alpha < \beta $
$\alpha < \beta $ જો $A < B$
$\alpha < \beta $ જો $A > B$
$\alpha < \beta $ if $A = B$
$a + b + c + d = 0$ આપેલ છે. નીચે આપેલ વિધાનોમાંથી ક્યું સાચું છે :
$(a)$ $a, b, c$ તથા તે દરેક શૂન્ય સદિશ છે.
$(b)$ $(a + c)$ નું મૂલ્ય $(b + d)$ ના મૂલ્ય જેટલું છે.
$(c)$ $a$ નું માન $b, c$ તથા તેના માનના સરવાળાથી ક્યારેય વધારે ન હોઈ શકે.
$(d)$ જો $a$ અને $d$ એક રેખસ્થ ન હોય તો $b+c, a$ અને $d$ વડે બનતા સમતલમાં હશે અને જો $a$ અને $b$ તે એક રેખસ્થ હોય, તો તે $a$ અને $b$ તેની રેખામાં હશે.
${F_1} = 1\,N$ બળ $x = 0$ ની દિશામાં છે,અને ${F_2} = 2\,N$ બળ $y = 0$ ની દિશામાં છે,તો પરિણામી બળ મેળવો
કોલમ $-I$ | કોલમ $-II$ | ||
$(1)$ બે સદિશોનું સંયોજન મહત્તમ | $(a)$ $180^o$ | ||
$(2)$ બે સદિશોનું સંયોજન ન્યૂનતમ | $(b)$ $90^o$ | ||
$(c)$ $0^o$ |
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
બે સદિશો $\overrightarrow A $ અને $\overrightarrow B $ ના માન અનુક્રમે $4$ એકમ અને $3$ એકમ છે. જો આ અદિશો $(i)$ એકજ દિશામાં $(\theta = 0^o)$. $(ii)$ પરસ્પર વિરુદ્ધ દિશામાં $(\theta = 180^o)$ હોય, તો પરિણામી સદિશનું માન જણાવો.