The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.

[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$

981-965

  • [JEE MAIN 2021]
  • A

    $9.25 \hat{{i}}+5 \hat{{j}}$

  • B

    $3 \hat{{i}}+15 \hat{{j}}$

  • C

    $2.5 \hat{i}-14.5 \hat{{j}}$

  • D

    $-1.5 \hat{{i}}-15.5 \hat{{j}}$

Similar Questions

If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following  vector $(s)$ have magnitude one

$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$     $(B)$ $\hat a + \widehat b$     $(C)$ $\hat a$      $(D)$ $\hat b$

The resultant of $\overrightarrow A + \overrightarrow B $ is ${\overrightarrow R _1}.$ On reversing the vector $\overrightarrow {B,} $ the resultant becomes ${\overrightarrow R _2}.$ What is the value of $R_1^2 + R_2^2$

Prove the associative law of vector addition.

If $y = x\sin x,$then

Two vectors $\overrightarrow A $and $\overrightarrow B $lie in a plane, another vector $\overrightarrow C $lies outside this plane, then the resultant of these three vectors i.e.,$\overrightarrow A + \overrightarrow B + \overrightarrow C $