$\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ અને $\overrightarrow{{OT}}$ નું પરિણામી બળ લગભગ $\ldots \ldots {N}$ જેટલું થાય.
[$\sqrt{3}=1.7, \sqrt{2}=1.4$ , $\hat{{i}}$ અને $\hat{{j}}$ એ ${x}, {y}$ અક્ષની દિશાના એકમ સદીશ છે.$]$
$9.25 \hat{{i}}+5 \hat{{j}}$
$3 \hat{{i}}+15 \hat{{j}}$
$2.5 \hat{i}-14.5 \hat{{j}}$
$-1.5 \hat{{i}}-15.5 \hat{{j}}$
કોઈ સદિશ $\vec A $ માથી એક નવો સદિશ $\vec B$ મેળવવા માટે તેને $\Delta \theta$ રેડિયન $( \Delta \theta << 1)$ જેટલું કોણાવર્તન કરાવવામાં આવે છે. તો આ કિસ્સામાં $\left| {\vec B - \vec A} \right|$ શું થશે?
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.
સદિશોના સરવાળા માટેના બે ગુણધર્મ લખો.