A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is
$\left| {\vec A} \right|\,\Delta \theta $
$\left| {\vec B} \right|\,\Delta \theta - \left| {\vec A} \right|\,$
$\left| {\vec A} \right|\,\left( {1 - \frac{{\Delta {\theta ^2}}}{2}} \right)$
$0$
The coordinates of a moving particle at any time $t$ are given by $x = a\, t^2$ and $y = b\, t^2$. The speed of the particle is
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $n = ........ $
The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form
Can the resultant of $2$ vectors be zero
A truck travelling due north at $20 \,m/s $ turns west and travels at the same speed. The change in its velocity be