$150^{\circ}$ ના ખૂણે રહેલા બે સદીશોનું પરિણામી મુલ્ય $10$ એકમ છે અને તે એક સદિશ સાથે લંબ રીતે ગોકવાયેલ છે. તો નાના સદિશનું માપન મુલ્ય ............. એકમ થાય ?
$10$
$10 \sqrt{3}$
$10 \sqrt{2}$
$5 \sqrt{3}$
એક ખુલ્લા મેદાનમાં એક કારચાલક એવો રસ્તો પકડે છે કે જે દરેક $500$ મીટર અંતર બાદ તેની ડાબી બાજુ $60^{°}$ ના ખૂણે વળાંક લે છે. એક વળાંકથી શરૂ કરી, કારચાલકના ત્રીજા, છઠ્ઠા તથા આઠમા વળાંક પાસે સ્થાનાંતર શોધો. આ દરેક સ્થિતિમાં કારચાલકની કુલ પથ લંબાઈની તેના સ્થાનાંતરના માન સાથે તુલના કરો.
બે સદીશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ને સમાન મૂલ્ય છે. જો $\overrightarrow{ A }+\overrightarrow{ B }$ નું મૂલ્ય (માનાંક) $\overrightarrow{ A }-\overrightarrow{ B }$ ના મૂલ્ય કરતાં બમણું હોય, તો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ વચ્ચેનો કોણ ...................... થશે.
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ નું મૂલ્ય લઘુતમ મળે.
સદિશોના સરવાળા માટેની મહત્ત્વની શરત જણાવો.
જો $\vec{P}+\vec{Q}=\overrightarrow{0}$, જો હોય તો નીચેના માંથી ક્યું સાયું છે ?