समीकरण ${x^4} - 2{x^3} + x = 380$ के मूल हैं

  • A

    $5, - 4,\frac{{1 \pm 5\sqrt { - 3} }}{2}$

  • B

    $ - 5,4, - \frac{{1 \pm 5\sqrt - 3}}{2}$

  • C

    $5,4,\frac{{ - 1 \pm 5\sqrt - 3}}{2}$

  • D

    $ - 5, - 4,\frac{{1 \pm 5\sqrt - 3}}{2}$

Similar Questions

यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$

( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:

  • [JEE MAIN 2014]

माना [ $t ], t$ से कम या बराबर महत्तम पूर्णांक फलन को दर्शाता है। तब $x$ में समीकरण $[ x ]^{2}+2[ x +2]-7=0$

  • [JEE MAIN 2020]

समीकरण $|\sqrt{ x }-2|+\sqrt{ x }(\sqrt{ x }-4)+2=0,( x >0)$ के हलों का योग बराबर है -

  • [JEE MAIN 2019]

माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।

  • [IIT 2024]

माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।

  • [JEE MAIN 2023]