यदि $A =\left[\begin{array}{lcl}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ हो, तो सही $\theta \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$ के लिये $\operatorname{det}( A )$ किस अन्तराल में स्थित होगा

  • [JEE MAIN 2019]
  • A

    $\left( {1,\left. {\frac{5}{2}} \right]} \right.$

  • B

    $\left[ {\frac{5}{2},\left. 4 \right)} \right.$

  • C

    $\left( {\left. {0,\frac{3}{2}} \right]} \right.$

  • D

    $\left( {\frac{3}{2},\left. 3 \right]} \right.$

Similar Questions

माना $\alpha$ तथा $\beta$ समीकरण $x ^{2}+ x +1=0$ के मूल हैं, तो $R$ में $y \neq 0$ के लिए $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ बराबर है:

  • [JEE MAIN 2019]

यदि रैखिक समीकरण निकाय $x-4 y+7 z=g$, $3 y-5 z=h$, $-2 x+5 y-9 z=k$ संगत (consistent) है, तो 

  • [JEE MAIN 2019]

एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष $(3,8),(-4,2)$ और $(5,1)$ हैं।

यदि वास्तविक संख्याओं $\alpha$ तथा $\beta$ के लिए रैखिक समीकरण निकाय : $x + y - z =2, x +2 y +\alpha z =1,2 x - y + z =\beta$ के अनंत हल हैं, तो $\alpha+\beta$ बराबर है ।

  • [JEE MAIN 2021]

समीकरण निकाय $x + y - z = 0$, $3x - y - z = 0$, $x - 3y + z = 0$ के हलों की संख्या होगी