The second, third and fourth terms in the binomial expansion $(x+a)^n$ are $240,720$ and $1080,$ respectively. Find $x, a$ and $n$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that second term $T_{2}=240$

We have    ${T_2} = {\,^n}{C_1}{x^{n - 1}} \cdot a$

So       ${\,^n}{C_1}{x^{n - 1}} \cdot a = 240$        ..........$(1)$

Similarly    ${\,^n}{C_2}{x^{n - 2}}{a^2} = 720$         ...........$(2)$

and       $^{n} C_{x} x^{n-3} a^{3}=1080$             .............$(3)$

Dividing $(2)$ by $(1),$ we get

 $\frac{{{\,^n}{C_2}{x^{n - 2}}{a^2}}}{{^n{C_1}{x^{n - 1}}a}} = \frac{{720}}{{240}}$ i.e., $\frac{(n-1) !}{(n-2) !} \cdot \frac{a}{x}=6$

or      $\frac{a}{x}=\frac{6}{(n-1)}$           ...........$(4)$

Dividing $(3)$ by $(2),$ we have

$\frac{a}{x}=\frac{9}{2(n-2)}$         ...........$(5)$

From $(4)$ and $(5),$ 

$\frac{6}{n-1}=\frac{9}{2(n-2)}$        Thus, $n=5$

Hence, from $(1), 5 x^{4} a=240,$ and from $(4), \frac{a}{x}=\frac{3}{2}$

Solving these equations for $a$ and $x,$ we get $x=2$ and $a=3$

Similar Questions

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to

If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to

If the coefficients of the three successive terms in the binomial expansion of $(1 + x)^n$ are in the ratio $1 : 7 : 42,$ then the first of these terms in the expansion is

  • [JEE MAIN 2015]

If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$

 

If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are

  • [JEE MAIN 2014]