The second, third and fourth terms in the binomial expansion $(x+a)^n$ are $240,720$ and $1080,$ respectively. Find $x, a$ and $n$
Given that second term $T_{2}=240$
We have ${T_2} = {\,^n}{C_1}{x^{n - 1}} \cdot a$
So ${\,^n}{C_1}{x^{n - 1}} \cdot a = 240$ ..........$(1)$
Similarly ${\,^n}{C_2}{x^{n - 2}}{a^2} = 720$ ...........$(2)$
and $^{n} C_{x} x^{n-3} a^{3}=1080$ .............$(3)$
Dividing $(2)$ by $(1),$ we get
$\frac{{{\,^n}{C_2}{x^{n - 2}}{a^2}}}{{^n{C_1}{x^{n - 1}}a}} = \frac{{720}}{{240}}$ i.e., $\frac{(n-1) !}{(n-2) !} \cdot \frac{a}{x}=6$
or $\frac{a}{x}=\frac{6}{(n-1)}$ ...........$(4)$
Dividing $(3)$ by $(2),$ we have
$\frac{a}{x}=\frac{9}{2(n-2)}$ ...........$(5)$
From $(4)$ and $(5),$
$\frac{6}{n-1}=\frac{9}{2(n-2)}$ Thus, $n=5$
Hence, from $(1), 5 x^{4} a=240,$ and from $(4), \frac{a}{x}=\frac{3}{2}$
Solving these equations for $a$ and $x,$ we get $x=2$ and $a=3$
If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to
If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to
If the coefficients of the three successive terms in the binomial expansion of $(1 + x)^n$ are in the ratio $1 : 7 : 42,$ then the first of these terms in the expansion is
If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$
If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are