$(x+a)^n$ ના વિસ્તરણમાં બીજું, ત્રીજું અને ચોથું પદ અનુક્રમે $240, 720$ અને $1080$ છે. $x, a$ અને $n$ શોધો.
Given that second term $T_{2}=240$
We have ${T_2} = {\,^n}{C_1}{x^{n - 1}} \cdot a$
So ${\,^n}{C_1}{x^{n - 1}} \cdot a = 240$ ..........$(1)$
Similarly ${\,^n}{C_2}{x^{n - 2}}{a^2} = 720$ ...........$(2)$
and $^{n} C_{x} x^{n-3} a^{3}=1080$ .............$(3)$
Dividing $(2)$ by $(1),$ we get
$\frac{{{\,^n}{C_2}{x^{n - 2}}{a^2}}}{{^n{C_1}{x^{n - 1}}a}} = \frac{{720}}{{240}}$ i.e., $\frac{(n-1) !}{(n-2) !} \cdot \frac{a}{x}=6$
or $\frac{a}{x}=\frac{6}{(n-1)}$ ...........$(4)$
Dividing $(3)$ by $(2),$ we have
$\frac{a}{x}=\frac{9}{2(n-2)}$ ...........$(5)$
From $(4)$ and $(5),$
$\frac{6}{n-1}=\frac{9}{2(n-2)}$ Thus, $n=5$
Hence, from $(1), 5 x^{4} a=240,$ and from $(4), \frac{a}{x}=\frac{3}{2}$
Solving these equations for $a$ and $x,$ we get $x=2$ and $a=3$
${(\sqrt x - \sqrt y )^{17}}$ ના વિસ્તરણમાં $16^{th}$ મું પદ મેળવો.
જો $\left(x+x^{\log _{2} x}\right)^{7}$ ના વિસ્તરણમાં ચોથું પદ $4480$ હોય તો $x$ ની કિમંત મેળવો. કે જ્યાં $x \in N$ આપેલ છે.
${(1 + x + {x^3} + {x^4})^{10}},$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.
જો $(x+y)^n$ ના વિસ્તરણમાં બીજા, ત્રીજા અને ચોથા પદો અનુક્રમે $135,30$ અને $\frac{10}{3}$ હોય, તો $6\left(n^3+x^2+y\right)=$ ...............
${({5^{1/2}} + {7^{1/6}})^{642}}$ ના વિસ્તરણમાં પૂર્ણાક પદની સંખ્યા મેળવો.