Trigonometrical Equations
normal

 $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ સમીકરણને સંતોષતી $0$ & $2\pi $ ની વચ્ચેની કિમત .............. છે 

A

$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

B

$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{17\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

C

$\left\{ {\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{13\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}} \right\}$

D

$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

Solution

$4\, cos^2\theta – 2 \,cos\theta – 1 = 0$

$cos\theta =$$\frac{{2\sqrt 2 \, \pm \,\sqrt {8 + 16} }}{8}$  $=$$\frac{{\sqrt 2 \, \pm \,\sqrt 6 }}{4}$

$cos\theta =$ $\frac{{\sqrt 6  + \sqrt 2 }}{4}$ $ \Rightarrow \,\,\theta \,\, = \,\,\frac{\pi }{{12}}\,;\,2\pi \, – \frac{\pi }{{12}}\, = \,\frac{{23\pi }}{{12}}$

$cos\theta =$ $ – \,\frac{{\sqrt 6  – \sqrt 2 }}{4}$

$cos\theta = cos(\pi -5\pi /12) ; cos(\pi +5\pi /12)$

$\theta = 7\pi /12 ; 17\pi /12$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.