$4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ સમીકરણને સંતોષતી $0$ & $2\pi $ ની વચ્ચેની કિમત .............. છે
$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$
$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{17\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$
$\left\{ {\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{13\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}} \right\}$
$\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$
સમીકરણ ${\cos ^2}\theta + \sin \theta + 1 = 0$ નો ઉકેલ . . . . અંતરાલમાં આવેલ છે.
જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
જો $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ હોય તો $tan(x/2)cot(y/2) =$
અંતરાલ $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ માં $x$ ની એવી કેટલી કિંમતો મળે કે જેથી $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$ થાય?
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\tan x=\sqrt{3}$.