The sines of two angles of a triangle are equal to $\frac{5}{{13}}$ & $\frac{{99}}{{101}}.$ The cosine of the third angle is :
$245/1313$
$255/1313$
$735/1313$
$725/1313$
If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :
If $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ find $\tan 2A$ in terms of $\tan B$ and show that
If $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, then $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ is
Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
$\sin 4\theta $ can be written as