The value of $\left( {1 + \cos \frac{\pi }{9}} \right)\left( {1 + \cos \frac{{3\pi }}{9}} \right)\left( {1 + \cos \frac{{5\pi }}{9}} \right)\left( {1 + \cos \frac{{7\pi }}{9}} \right)$ is
$\frac{9}{{16}}\,$
$\frac{10}{{16}}\,$
$\frac{12}{{16}}\,$
$\frac{5}{{16}}\,$
If $cos A = {3\over 4} , $ then $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $
If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always
$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $
Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :