The value of $\left( {1 + \cos \frac{\pi }{9}} \right)\left( {1 + \cos \frac{{3\pi }}{9}} \right)\left( {1 + \cos \frac{{5\pi }}{9}} \right)\left( {1 + \cos \frac{{7\pi }}{9}} \right)$ is
$\frac{9}{{16}}\,$
$\frac{10}{{16}}\,$
$\frac{12}{{16}}\,$
$\frac{5}{{16}}\,$
In the figure, $\theta_1+\theta_2=\frac{\pi}{2}$ and $\sqrt{3}(B E)=4(A B)$. If the area of $\triangle CAB$ is $2 \sqrt{3}-3$ unit $^2$, when $\frac{\theta_2}{\theta_1}$ is the largest, then the perimeter (in unit) of $\triangle CED$ is equal to $...........$.
If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to
Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
The value of $2 \sin(\frac{\pi}{8}) \sin (\frac{2 \pi}{8}) \sin (\frac{3 \pi}{8}) \sin (\frac{5 \pi}{8}) \sin (\frac{6 \pi}{8}) \sin (\frac{7 \pi}{8})$ is:
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $