वह न्यूनतम प्राकृत संख्या $n$, जिसके लिए $\left( x ^{2}+\frac{1}{ x ^{3}}\right)^{ n }$ के प्रसार में $x$ का गुणांक ${ }^{ n } C _{23}$ है
$38$
$58$
$23$
$35$
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ के विस्तार में ${x^{ - 9}}$ का गुणांक होगा
${\left( {x - \frac{1}{x}} \right)^{11}}$ के विस्तार में मध्य पद होगा
${\left( {{x^2} - \frac{1}{x}} \right)^9}$ के प्रसार में $x$ से स्वतंत्र पद होगा
$\left(2 \mathrm{x}+\frac{1}{\mathrm{x}^7}+3 \mathrm{x}^2\right)^5$ के प्रसार में अचर पद है______.
यदि ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में $r$ वें पद में ${x^4}$ आता है, तो $r = $