The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$

  • A

    $x = 2$

  • B

    $x = 3$

  • C

    $x = 4$

  • D

    $x = - 2$

Similar Questions

Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that  $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$  $2 x-y=\log _b(\sqrt{1080}),$  then $4 x+5 y$ is equal to. . . . 

  • [IIT 2024]

The number ${\log _{20}}3$  lies in

Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is

The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to

  • [JEE MAIN 2020]

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then